

Radio and Microwave Frequency Attenuation in Glass

Figure 1

In today's post 9/11 world, safety and security take high priority in building design and construction. In addition to physical protection, information security is also a significant consideration in todav's architectural designs. The materials used for construction of architectural buildings can information influence security via electromagnetic signal attenuation. This document discusses signal attenuation in particularly in the glass, radio and microwave frequency ranges.

In some situations designers want as little

signal attenuation as possible while in other cases signal blocking is necessary such as in secure government installations. At the same time architects and their clients want to maintain the styling trends of modern day architecture while achieving the desired blocking the transmission of various types of airwave information communications. Since glass is a major material contributing to building performance and aesthetics, what can be done to help achieve the continued use of vast areas of glass in architectural design yet provide the desired security of information?

Vitro.

Radio and Microwave Frequency Attenuation in Glass

The answer is to use transparent, conductive, metal-based coatings on the glass. Most high efficiency, IR reflecting, low-E glass coatings have one or more thin, continuous layers of metallic silver. Silver, like other highly-conductive metals, is an effective blocker of electromagnetic waves. The reduction of radio frequency signal intensity after passing through a material is called attenuation, which is usually expressed in units called decibels (dBs). A decibel is a logarithmic unit, so as examples, a 10 dB attenuation is a reduction by a factor of 10, a 20 dB attenuation is a reduction by a factor of 100, and a 40 dB attenuation is a reduction by a factor of 10,000. Testing of glass samples has shown that more or thicker silver layers mean more attenuation of electromagnetic waves. Currently, the maximum number of silver lavers commercially available in any given architectural, low-E product is three. Solarban[®] 70XL Solar Control Low-E Glass is Vitro's (formerly PPG Industries) triple silver coated glass with three distinct and separate silver layers in one coating. Vitro's double silver product is named Solarban® Vision glazing 60. construction incorporating two or more Solarban® 70XL triple silver coated surfaces will permit a high level of RF attenuation while providing excellent energy performance while still maintaining appropriate visible light transmittance (VLT).

Figure 1 above shows the electromagnetic spectrum. It also identifies the regions of

that spectrum that are utilized by RF devices such as Wi-Fi, Bluetooth, cellular phones, radio and TV. The chart in Figure 2 below represents Vitro RF attenuation testing results of several samples including Vitro coated glass products through the range of 800 to 3000 MHz which covers the communication frequencies of many of the common electronic devices just mentioned. These measurements indicate that a glass laminate with one embedded, triple silver, low-E coating blocks approximately 40 dBs, while two embedded, triple silver coatings provide attenuation of approximately 54 dBs. That is nearly as much as a 1/8" thick, solid aluminum plate can block! However, a building using curtain wall construction containing two lites of Solarban[®] 70XL coated glass would not necessarily be impervious to these radio frequencies. The data provided in Figure 2 for Vitro glass products represents the glass performance only and does not take into account the framing or wall system. A portion of the entire curtain wall assembly or a representative portion of the building envelope must be considered in order to determine the overall level of signal attenuation. The glass constructions tested to develop the data shown in Figure 2 are laminates which can be used to provide physical security in addition to signal attenuation. For designs not requiring laminated glass, similar signal attenuation can be achieved with the same glass products used in a non-laminated glass construction.

Radio and Microwave Frequency Attenuation in Glass

Depending on the designer's goal, there are many other aspects of building construction that can affect RF transmission both positively and negatively. Most building materials that do not incorporate metallic layers such as masonry materials (including concrete, blocks and bricks), petroleumbased roofing materials, wood, non-foil insulation, etc. will allow passage of radio waves with minimal attenuation. To insure good cell phone or other radio wave reception inside a building where RF security is not a concern, silver based low-E glass can still be successfully used. In curtain wall constructions where the entire building may be enveloped in signal blocking, low-E coated glass, a couple of common solutions are: 1) Incorporate uncoated glass in strategic, line-of-site signal areas or in spandrel zones where opacifying ceramic frits are used on the glass in conjunction with traditional non-foil insulation. 2) Installing external antennas combined with radio repeaters inside the building can provide excellent transmission of select radio waves no matter what the building construction.

For nearly complete shielding of RF, utilize a glass construction with two or more lites of triple silver Solarban[®] 70XL coated glass along with metallic foils, metal roofs, and

Vitro.

Radio and Microwave Frequency Attenuation in Glass

other signal blocking construction materials. This can be very effective. If it is possible that these metallic components can be made contiguous and then grounded, a Faraday Cage will be formed effectively shielding all electrical fields from passing through.

In summary, windows which incorporate high performing silver based, low-E coatings such as Vitro's Solarban[®] 70XL coated glass can provide RF transmission security if desired, but use of these coatings does not preclude the ability of RF devices to communicate with the outside world if airway transmission of information is necessary or desired. If RF transmission is needed, but security is still a concern, traditional methods of encrypting the signal or data can be used, but even the best coding can be interpreted by a seasoned hacker.

Table 3 below shows the optical and thermal performance of window constructions typical of those tested for RF attenuation. Those results are shown in Figure 2 displayed earlier in this document.

	<u>w-E Co</u>		JUITE	ices											
		Tr	ansmitta	nce	R	eflectan	ce	U-\	/alue						
* All information represents Center of Glass Performance	IGU				Visible	Visible	Solar	Winter	Summer						Tdw
Data *	Thick	UV	Visible	Solar	Exterior	Interior	Exterior	Night	Day	SC	SHGC	RHG	LSG	Tdw-K	ISC
SmmClear060PVB6mmClear	0.506	0%	86%	61%	8%	8%	6%	0.95	0.86	0.82	0.71	175.8	1.21	27.2%	58.3
SmmSB60(2)Clear060PVB6mmClear	0.536	0%	72%	32%	9%	10%	28%	0.93	0.85	0.52	0.45	116.0	1.60	19.9%	45.8
SmmSB60(2)Clear060PVB6mmSB60(3)Clear	0.506	0%	61%	25%	10%	10%	30%	0.95	0.86	0.45	0.39	102.4	1.56	16.4%	38.0
SmmSB60(2)Cl050AS6mmSB60(4)Cl060PVB6mmCl	1.229	0%	57%	23%	11%	12%	29%	0.28	0.27	0.41	0.35	85.2	1.63	15.3%	35.8
6mmSB70XL(2)Clear060PVB6mmClear	0.506	0%	60%	23%	14%	16%	50%	0.95	0.86	0.36	0.32	84.6	1.88	16.2%	38.2
6mmSB70XL(2)Clear060PVB6mmSB70XL(3)Clear	0.506	0%	43%	15%	18%	18%	52%	0.95	0.86	0.30	0.26	71.1	1.65	10.4%	25.9
SmmSB70XL(2)St050AS6mmSB70XL(4)St060PVB6mmClear	1.229	0%	31%	10%	17%	19%	54%	0.28	0.26	0.26	0.22	55.1	1.41	6.8%	17.8
nterlayer material is 0.060" thick Solutia Saflex PVB.															
imulations were ran using LBNL windowb.3 and Optics6 softw		0.0.01	01.0 01 0			ading Dat				0. 9.40					
Due to the potential for a perceived variation in angular color, ca While all low-e coatings have the potential for this phenomenon ariation is typically random in nature. The potential for color va s behind it, with darker tints resulting in greater highlighting of th his general color variation is described in the Glass Associatio D 01-0708). A quote from it states "There are also design cons When the coating, applied to the glass substrate, is placed in co	regardles riation ma le color sh n of North iderations ntact with	dvised as of the ay be m hift. Ameri a Ameri a, which	when low e glass su inimized ca (GAN, n must be erlayer, th	v-e coat ubstrate when th A) Inform taken i he refrae	ings are e involved, o he tinted s national B into accou ctive index	mbedded different lo ubstrate is ulletin cal nt when a c of the co	within a la ow-e coatin s located in led "Desig low e or r ating is ch	aminate v ngs may n front of gn Consid	where the exhibit col the coating derations for coating is	coating or varia g and h or Lam used ir	g is adja ation to v nighlight inated C n the co	cent to varying ted whe Glazing nstructi	the inte degree en the ti Applica on of a	es and th inted sub ations" (f	e ostrate GANA
ue to the potential for a perceived variation in angular color, cat hile all low-e coatings have the potential for this phenomenon ariation is typically random in nature. The potential for color va behind it, with darker tints resulting in greater highlighting of th his general color variation is described in the Glass Association D 01-0708). A quote from it states "There are also design cons then the coating, applied to the glass substrate, is placed in co you are considering this type of unit construction, PPG recomm	ution is a regardles riation ma le color sh n of North iderations ntact with nends a fi	dvised as of the ay be m hift. h Ameri a, which h the int ull size	when low e glass su inimized ca (GAN/ n must be erlayer, tt mock-up	v-e coat ubstrate when th A) Inform taken i he refrace review	tings are e involved, o ne tinted s national B into accou ctive index under job	mbedded different lo ubstrate is ulletin cal nt when a c of the co site cond	within a la ow-e coatin blocated in led "Desig low e or r ating is ch itions.	aminate on ngs may n front of gn Consider reflective langed an	where the exhibit col the coating derations for coating is nd will resp	coating or varia g and h or Lam used ir ult in a	g is adja ation to v nighlight inated C n the con perceive	cent to varying ted whe Blazing nstructi ed colo	the inte degree en the ti Applica on of a r shift."	es and th inted sub ations" ((laminat	e ostrate GANA
Simulations were ran using LBNL Window6.3 and Optics6 softw Due to the potential for a perceived variation in angular color, ca While all low-e coatings have the potential for this phenomenon ariation is typically random in nature. The potential for color va s behind it, with darker tints resulting in greater highlighting of th This general color variation is described in the Glass Associatio D 01-0708). A quote from it states "There are also design cons When the coating, applied to the glass substrate, is placed in co f you are considering this type of unit construction, PPG recomp Performance data is based on representative samples of factory comparison purposes and should not be considered a contract appropriate design considerations such as wind and snow load eviewed under the specific job-site conditions and retain the m	iution is a regardles riation ma le color sh n of North iderations ntact with nends a fi productio . It is the r analysis,	dvised as of the ay be m hift. a Ameri a, which the int ull size on. Act recipien therma	when low e glass su inimized ca (GAN, n must be erlayer, th mock-up ual value ual value nt's respo al stress a	v-e coat ubstrate when th A) Inform taken i he refran review s may v onsibility nalysis,	ings are e involved, (he tinted s national B nto accou ctive index under job ary slightly to ensure , and local	mbedded different Ic ubstrate is ulletin cal nt when a c of the co site cond v due to va the manu	within a la w-e coatin cocated in led "Desig low e or r ating is ch itions.	aminate on ngs may n front of eflective eanged a the prod	where the exhibit col the coatin derations fo coating is nd will resu uction pro above glaz	coating or varia g and h or Lam used ir ult in a cess.	g is adja ation to v nighlight inated C n the con perceive This dat	cent to <i>v</i> arying ted whe Glazing nstructi ed colo a is to t ons as	the inte degree en the ti Applica on of a r shift."	ations" (laminat	e ostrate GANA ie.

Radio and Microwave Frequency Attenuation in Glass

For the optical and thermal performance of additional glass constructions of Vitro Flat Glass Products, please see the Construct IGU Tool at:

http://construct.vitroglazings.com/

HISTORY TABLE									
ITEM	DATE	DESCRIPTION							
TD-151	May 13, 2014	Original Issue Date							
Revision #1	2016-10-04	Updated to Vitro Logo and format							

This document is intended to inform and assist the reader in the application, use, and maintenance of Vitro Flat Glass products. Actual performance and results can vary depending on the circumstances. Vitro makes no warranty or guarantee as to the results to be obtained from the use of all or any portion of the information provided herein, and hereby disclaims any liability for personal injury, property damage, product insufficiency, or any other damages of any kind or nature arising from the reader's use of the information contained herein.